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ABSTRACT 

A customized approach to Pseudo Random Number Generation (PRNG) is 
developed specifically for the highly parallelizable sensor models in the ground 
vehicle autonomy application domain.  The work considers three desirable 
attributes (namely quality, efficiency and determinism).  Furthermore, the 
application demands high fanout (1:1Million+) seeding of traditional PRNGs.  An 
approach using hash functions to generate the seeds for the PRNGs, each of which 
generates a small (i.e. 20) run of numbers, to handle determinism is investigated. 
Quality and efficiency are evaluated for multiple combinations of hash functions 
and PRNGs and a pareto front is created. Quality assessments were performed 
using industry standard testing suites (TestU01 and PractRand) and efficiency of 
various hash, PRNG, and batch size combinations was benchmarked on 
Windows/x64, ARM and NVIDIA/CUDA architectures.   
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1. INTRODUCTION 

Modeling and Simulation (M&S) is a 
precise discipline because the underlying 
technologies are precise, namely computers 
and programming languages.  As such M&S 
practitioners can encode mathematical laws 
into implementations which easily compute 
using 15 significant digits of precision.  
Furthermore, the data which feeds these 
models are considered equally precise; planes 
are perfectly flat, joints contain no slack, 

bodies are perfectly rigid, terrain is composed 
of connected polygons, etc.  These 
simplifying assumptions make computation 
and representation easier and more 
computable and very often provide a very 
good first order approximation to reality.  In 
other cases, these assumptions oversimplify 
reality and make even a first order 
assumption in adequate.  One aspect of 
modeling which is underserved by this 
precision is the representation and modeling 
of natural environments.  In this case the 
system to be modeled is imprecise, complex, 
and stochastic.  It is therefore imperative that 
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the modeling of any system which interacts 
with a natural environment either through 
contact (i.e. tire/track) or through sensing 
(i.e. camera, LIDAR, radar) in some way 
reflect this imprecision which we regard as 
uncertainty around simplified yet precise 
models.  Typically, uncertainty is introduced 
in these cases by a source of randomness such 
a Pseudo Random Number Generator 
(PRNG). 

In this work we are seeking to add 
randomness to sensor models which are used 
in the autonomous systems domain, 
specifically cameras and LIDARs.  
Simulations of these sensor systems are 
highly parallelizable in that each individual 
point in a raster or scan is independent of the 
others.  This work was motivated by the need 
for a high-quality PRNG which could work 
with a highly parallelized LIDAR model.  In 
this use case the following characteristics are 
essential: 

1. High within sample quality 
2. High between sample quality 
3. High over-time quality 
4. Determinism 
5. Parallelism 
6. Efficiency   
With respect to quality, we intend the 

statistical quality of non-correlation.  By 
determinism we mean that given the same 
global seed value, the actual random number 
are well-determined for each time step, each 
beam and each value within a beam.  By 
parallelism, we mean that the PRNG does not 
depend on a shared state across parallel wok 
units (i.e. threads).  Because a single LIDAR 
scan may have on the order of 1 million 
individual beams, we don’t want to depend 
on a shared seed or serialize the generation of 
random numbers.  By efficiency we mean 
computational cost.  

Most programming languages and/or their 
standard libraries contain facilities for the 
generation of random numbers.  These 
facilities typically implement one of the well-

known algorithms such as Linear 
Congruential Generator (LCG) which takes 
the form of  

𝑥𝑥𝑛𝑛+1 = (𝑎𝑎𝑥𝑥𝑛𝑛 + 𝑐𝑐)mod 𝑚𝑚 
where the prior value of the generator 𝑥𝑥𝑛𝑛 is 
often referred to as the seed, and 𝑎𝑎, 𝑐𝑐, and 𝑚𝑚 
are chosen to provide long periods in the 
cyclic nature of modular arithmetic.  These 
types of generators are fast to compute, being 
composed of a few integer arithmetic 
operations.  As such, they are designed to 
provide a single sequence of random 
numbers due to the shared state as 
represented by the seed.  So LCGs provide 
efficiency but are not well suited to parallel 
use because of the shared seed.  To achieve 
parallelism and determinism, we sought a 
method which would allow each work item to 
maintain its own seed for efficiency, but 
make the seed deterministically depend on 
the time step and the work item.   
 
1.1.  Related work 

Random number generators have been 
extensively researched and studied.  Surveys 
of methods may be found on-line [1].  Press 
et al. [2] also provide a good discussion of the 
topic.  Matsumoto, et al. [3] examine the 
problem of poor choice in the seeding of 
PRNG algorithms when employed in a 
parallel configuration. More recently 
Jarzynski, et al. [4] examined hash functions 
as suitable sources of PRNGs which they 
evaluated on GPU hardware for both 
efficiency and quality.   Steele and Vigna [5] 
recently discuss the choice of multipliers in 
the linear congruential PRNGs.  Manssen, et 
al. [6] discuss the practical implementation of 
popular PRNG on GPU hardware and present 
their own algorithm designed to be efficient 
on CUDA hardware.   

The approach to parallel independent 
streams of PRNG has been addressed by 
several researchers.  Mascagni and 
Srivivasan developed an algorithm for 
generating parameterized PRNGs in the 
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context of Monte Carlo simulation.  Steele, et 
al. [7] present an algorithm which they call 
“SplitMix” which allows a deterministic split 
of the stream of random number generators.  
In their approach, this splitting behavior can 
be arbitrarily deep, but it couples the 
generation and splitting functions.  It is based 
on the DotMix algorithm of Leiserson, et al. 
[8] which introduces the idea of pedigrees to 
handle the branching of random number 
generator seeds.  Subsequently Steele and 
Vigna improve on the SplitMix algorithm 
with the LXM family or PRNG algorithms.  
This family improves the PRNG with longer 
periods (up to 2128) along with a better mixing 
function.  Salmon, et al. [9] approach the 
problem of splitting using a simple counter 
and introduce a new PRNG which they call 
Philox. Phillips, et al. [10] address the 
problem of GPU based PRNGs with small 
batches over thousands of threads in the 
context of simulating Brownian Dynamics.  
L’Ecuyer, et al. [11], [12] also examine 
PRNGs in parallel on GPU hardware and 
provide an excellent survey of prior work on 
the topic.   

Finally, regarding the testing of PRNGs 
with respect to statistical performance several 
options are available.  Srinivasan, et al. [13] 
give a good overview of the qualities which 
make a good PRNG and outline some testing 
approaches. An early test suite called 
DIEHARD was developed by Marsaglia [14] 
which was subsequently improved by Brown, 
et al. [15] as Dieharder.   L’Ecuyer and 
Simard [16] developed a test suite called 
TestU01 which used provides several 
statistical tests for a PRNG stream.  The test 
suite provides different batteries of tests 
named “SmallCrush”, “Crush” and 
“BigCrush” with 15, 144, and 160 metrics 
respectively.  Finally, the PractRand suite 
developed by Cook [17] provides a software 
suite designed to interface with a user-
provided PRNG. 

 

1.2. Summary 
The remainder of this paper presents our 

approach to seeding PRNGs for each work 
item.  Based on our approach, we then seek 
to find high quality hash functions and 
PRNGs which work well in our high fan-out, 
low evaluation use case.  We describe the 
contenders and our inclusion/exclusion 
criteria.  We then present our evaluation 
methods.  Results of the analysis are 
presented and the paper finished with our 
conclusions and lessons learned. 

 
2. OUR APPROACH 

Our approach (see Figure 1) is a hybrid of 
DotMix and SplitRand’s approach with 
inspiration from Philox. DotMix creates 
independent sequential PRNG for each task 
initialized with a hash of a unique identifier. 
This unique identifier, called a pedigree, is a 
list of counters. The pedigree of a task is the 
pedigree of its parent concatenated with N, 
where N is the Nth subtask spawned. 

 
Figure 1. Topology of the Hash-Seeded PRNG approach for 
high-fanout, low batch application. 

Understanding the difference between 
DotMix and our approach first requires a 
change in terminology. Instead of tracking 
task dependencies and threads, we track 
processing steps and work items respectively. 
A work-item’s identifier (e.g., its pixel 
number) is constant irrespective of what core 
or in what order the work is performed. So, 
our pseudo-pedigree in a multi-camera 
simulation might look like this: [frame#, 
camera#, pixel#].  

If we stopped at this stage, we could use the 
DotMix algorithm. But as Steele showed in 
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the SplintRand algorithm [7], there are much 
more efficient ways of hashing. Alternately 
we could take these numbers, plus a counter, 
as the 4 parameters to Philox4x32. However, 
in practical implementation, the pedigree 
would have more than 4 items, as shown in 
Figure 2, and would not map so easily. Also, 
as we show later, there are faster methods 
than using Philox. 

 

 
Figure 2. Pedigrees (i.e. numbers of the form X.Y.Z…) 
shown for the levels of nesting in this application. 

What Steele noticed about hashing the 
pedigree is we don’t need to hash the whole 
pedigree once it’s completely known. 
Instead, SplitRand maintains a running hash 
state, shared across all items at the same 
level. Then for each work item, it finishes the 
hash independently. Furthermore, it doesn’t 
use a hashing function capable of variable 
length inputs, it instead creates a hash chain 
using by hashing a mix of the parent tasks 
hash and the sub-tasks counter. For our 
algorithm we do the same but use a 2→1 

reducing hashing function a counter based 
PRNG (CBPRNG). The formula is:  

 
state𝑛𝑛  =  𝐻𝐻(state𝑛𝑛−1, counter)  

 
where state0 is the global seed for the 
program and 𝑛𝑛 is the 𝑛𝑛th item in the pedigree. 
On a leaf node of our dependency tree the 
PRNG is seeded with state𝑛𝑛. 

Not any hashing function is suitable for this 
purpose. A hash collision will result in two 
PRNGs being initialized with the same seed 
which will cause two pixels to have the exact 
same sequence of random numbers which 
will result in visible artifacts. 

To avoid this, we need the hash function to 
be a bijection but, by definition, a reducing 
function cannot be a bijection. As a practical 
workaround, we require the hashing function 
to be bijective in each argument. More 
specifically, we need a function of multiple 
arguments and, with respect to each 
argument, the function is a bijection when all 
other arguments are held constant. In the case 
of a two-argument function, you can think of 
this as a collection of bijections on one 
parameter selected by the other parameter. 

With this requirement we can show that 
there can be no meaningful collisions within 
the domain of camera simulation. In the case 
of individual pixels: each PRNG is initialized 
with 𝐻𝐻(camera_seed, pixel#) since camera 
seed is constant across the camera/frame, 
each pixel is guaranteed a unique seed. And 
when viewed temporally, pixel# is constant 
across frames and therefore each pixel will 
always get a new seed for each frame. In the 
case of stereo camera pairs, the same holds 
for the same pixel in different cameras in the 
same frame as they differ only by camera#. 

At one level up, each camera will have a 
unique seed as calculated by 
𝐻𝐻(frame_seed, camera#) where 
frame_seed is constant at a given time step. 
It should be noted that different pixels at 
different timesteps, or different pixels in 
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different cameras may still collide as two or 
more of the parameters in the hashing chain 
have changed. However, with 264 possible 
seeds, collisions will be extremely rare and 
with the seeds being used for unrelated 
PRNGs, the collisions should be 
unnoticeable in the simulation output. 

As an additional optimization, a different, 
faster hash function may be used at the leaf 
nodes. Users may want to do this because the 
final hash function in the chain is used many 
orders of magnitude more often than the hash 
functions leading up to it. The high entropy 
output of the preceding hash functions 
mitigates the low-entropy input weakness of 
lower quality hash functions. Alternately, a 
PRNG that offers separate streams may be 
used with no final hash at the leaf node. The 
PRNG’s seeding function assumes the duties 
of the hash. 
 
3. SELECTION OF HASH FUNCTIONS 
AND PRNGS. 
As demonstrated by the wealth of options as 
collected by Jarzynski [4], creating new 
PRNG and hashing functions is a popular 
pastime among scientists and hobbyists alike. 
Also shown by Jarzynski is that most don’t 
hold up to scrutiny. 

Because we are testing hash/PRNG 
combinations, the number of tests we will 
ultimately have to run grows geometrically. 
Therefore, we limit our consideration to 
functions that are either: popular, included in 

popular software, or well-regarded in the 
literature. From this list we further eliminate 
functions that are cryptographic (slow), have 
large state (>128bits), are floating-point 
based, or are ill-suited for GPU compute.  
 
3.1. Hash Functions 

The list of hash functions considered in this 
work are contained in Table 1. 

 
For the 1→1 hashes (denoted by h()) in this 

list, we convert them into 2→1 hashes 
(denoted by H(x, y)) with the methods 
collected by Jarzynski and described in the 
following sections.  Note: The caret (^) 
symbol denotes a bitwise exclusive-or 
operation as defined in the C family of 
computer languages. 

 
Nesting Method 

This hash is implemented as: 
 

H(x, y) = h(x ^ h(y)) 
 
In Jarzynski’s study, this improves the 

quality of poor hashes at the expense of 
doubling the computational effort as it 
requires two evaluations of h(). 

 
Dot Product Method 

This hash is implemented as: 
 

H(x, y) = h(x * C1 + y * C2) 
 

Table 1 Hash functions evaluated. 
Hash Name Description 
DotMix The N→1 hash used in the Pedigrees architecture. [8] We only use it as a 2→1 hash. 
Iqint1 A 1→1 hash function recommended by Jarzynski [4] 
Lea64 A variant of the Murmur hash finalizer. A 1→1 mixing function optimized for 32-bit architectures. 

Used in SplitRand [7] 
MoreMur A variant of the Murmur hash finalizer. A 1→1 mixing function with constants optimized for 

higher-order avalanche. The best of the known variants. [18] 
Nasam A 1→1 mixing function similar in form to the Murmur hash finalizer but with more operations. [19] 
Xxhash32 A hash recommended by Jarzynski [4] 
Various 
PRNG [20] 

Any full-period PRNG of the form state𝑛𝑛 =  𝑓𝑓(state𝑛𝑛−1) is also a bijection and suitable for use as 
a 1→1 hash. 
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where C1 and C2 are co-prime.  In our 
implementation we used the constants in the 
“dot” portion of the DotMix hash as they are 
shown to be collision resistant [8].  

 
Linear Method:  

This hash is implemented as: 
 

H(x, y) = h(y * A + x) 
 

which is a simplification of the dot product 
method and the fastest combination method, 
but Jarzynski found that it weakens the 
strength of the hash. In our implementation 
we make some minor tweaks to improve its 
avalanche properties (i.e. the probability of a 
given bit to flip on the output, given a single 
bit flip on the input). First, because the form 
is identical to LCG, we use a spectrally good 
A from Steele [5]  instead of any old prime. 
In addition, because the counter (y) has less 
entropy than the seed, we multiply the 
counter by A to whiten it instead of the seed. 
 
Xor-encrypt-xor (XEX) Method:  

This hash is implemented as: 
 

H(x, y) = x ^ h(x ^ y) 
 
This method was not included in Jarzynski 

but it is a common mode of operation for 
block encryption cyphers and simple enough 
for inclusion. We later noticed that XEX is a 

bijection with respect to only one parameter 
and this inadequacy shows up in our test 
results. This method is incompatible with our 
architecture but is included here for 
completeness. 

 
3.2. PRNGs 

The PRNG functions which we included in 
this analysis are shown in Table 2. We also 
have two customized variants: lcg64top32 
and philox2x32x10rev. The first is the same 
as our 64-bit LCG except the low 32 bits are 
discarded as suggested by O’Neill as a cheap 
improvement. [21] The second is 
Philox2x32x10 with the inputs reversed to 
make the key 64 bits and the counter 32 bits. 

 
4. TESTING APPROACH 

TestU01 [16] and PractRand [17] are two 
test suites that we used to measure the quality 
of our system. TestU01 is the gold standard 
in the scientific community as its tests are 
based on common measurements and 
processes. Its weakness is that many of its 
tests are floating-point-based which makes it 
less sensitive to weaknesses in the low order 
bits. PractRand, in comparison, treats the 
input as a stream of bytes. It’s primarily 
looking for patterns in the bits or low 
variance.  

These test batteries are designed for 
sequential PRNG testing and not parallel 
testing. So, we converted our parallel output 
into a sequential stream by concatenating the 
output of multiple generators until the test 
was satisfied. Because different applications 
will use different quantities of numbers per 
generator, and different generators produce 
data at different bit sizes, we normalized the 
output to 32-bit words and retested each 
hash/PRNG pair at 4, 8, 16, 32, 64, 128, and 
256 random words generated per seed. 

TestU01’s “BigCrush” battery reports 160 
metrics which we report as a pass/fail 
percentage. PractRand runs until it finds a 

Table 2 PRNG functions evaluated. 
PRNG 
Name 

Description 

LCG 
variants 

For the 64-bit generator we use 
Knuth’s constants. For the 32-bit 
generator we use the constants from 
Numerical Recipes.  

PCG 
Variants 

A family of PRNG functions [21] 

Philox 
Variants 

A family of CBPRNG functions. 
Optimized for GPU Compute. [9] 

Xorshift 
Variants 

A subset of linear-feedback shift 
registers which are efficient to 
implement on modern processors. 
[20] 
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statistical flaw on any metric. At which point 
it reports the number of bytes analyzed. 

Running BigCrush requires significant 
computing resources. Roughly 20 core-hours 
per test. To reduce our compute effort, we 
first ran the algorithms against “SmallCrush” 
and then “Crush”. Only the algorithms that 
passed were promoted to the next level of 
testing. After seeing consistency of the 
results across all batch sizes on Crush, we 
skipped the 8, 32, and 128 words per 
generator analyses on BigCrush as they are 
unlikely to yield any new information. 

While PractRand is also computationally 
expensive, it can fail fast. So for it, we only 
eliminated algorithms that failed SmallCrush. 

Philox, which is suitable as a total system 
replacement, was not paired with any hash 
functions as it would reduce performance for 
no benefit. 

 

5. RESULTS 
Figure 3 shows the results of our testing 

using PractRand on x86-64 architecture with 
16 numbers generated per work-item. Many 
algorithm pairs pass the statistical tests and 
are suitable for use with our architecture. 
They are lined up at the top of the graph. 
Amongst these options, the faster algorithms 
are on the right. The BigCrush results, Arm-
64 results, and results for N = 4, 16, 256 paint 
a similar picture and are available in the 
Appendix. 

Of note, PCG RXS M XS 64 is consistently 
the fastest or near fastest and it passes without 
any additional hashing (labeled as “identity” 
hash). Its separate streams feature provides 
the differentiation required. 

The plots for N = 8, 32, 64, and 128 do not 
contain any surprises and are omitted for 
brevity. As a series, the performance of the 
pair is close to that of the hash for small N, 
and smoothly transitions toward the 

 

 
Figure 3 Quality vs performance of hash/PRNG pairs. The hash function is indicated by color; the PRNG by letter. Quality data 
measured by PractRand. Performance measured on x86-64 architecture. 
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performance of the PRNG for larger N. We 
did not find any catastrophic hash/PRNG 
pairings except for the broad case of mixing 
32-bit and 64-bit algorithms. 

When run on Arm64 architecture the 
relative rankings are consistent with x86-64. 
However, bit-shift heavy algorithms received 
a noticeable bump in performance. This is 
unsurprising as ARM machine instructions 
include “free” bit shifts. 

When ran on NVIDIA GPU the results are 
again very similar with the notable exception 
being the Philox family of algorithms. Philox 
was designed to run well on GPU, and it 
shows. 

It is important to note that all the generators 
with 32 bits of state were found inadequate. 
There are two reasons for this. The first is that 
BigCrush analyzes enough data to fail any 
generator with less than 36 bits of internal 
state [21]. Secondly, because we initialized 
32-bit generators with 64-bit hashes, the 
reduction of the hash output to 32 bits to 
initialize the PRNG is not a bijection. Due to 
the birthday problem, a collision is likely to 
occur well before 232 work items. 32-bit 
generators must be seeded with 32-bit hashes 
to keep our guarantee of limited collision 
resistance. 

 
6. CONCLUSIONS 

Overall, our testing shows that our 
architecture can provide deterministic 
parallel pseudo-random numbers when 
paired with appropriate hash and PRNG 
functions. It passes industry-standard tests of 
randomness with many different hash/PRNG 
combinations providing implementation 
flexibility. Of the algorithms we tested, PCG 
RXS M XS 64 is the clear choice for use 
within this architecture. It is as sound as any 
other generator to the limits of our testing and 
is the fastest passing PRNG. Its separate 
streams feature enables it to eliminate the 
final hashing step before initializing the 
generators which provides a small increase in 
performance. 
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Appendix. 

 
Figure 4 PractRand quality vs performance of hash/PRNG pairs in the small batch case (N=4) on x86-
64 architecture. 

 
 
 

 
Figure 5 PractRand quality vs performance of hash/PRNG pairs in the medium batch case (N=16) on 
x86-64 architecture. 
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Figure 6 PractRand quality vs performance of hash/PRNG pairs in the Large batch case (N=256) on 
x86-64 architecture. 

 

 
Figure 7 TestU01 (BigCrush) quality vs performance of hash/PRNG pairs in the medium batch case 
(N=16) on x86-64 architecture. 
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Figure 8 PractRand quality vs performance of hash/PRNG pairs in the medium batch case (N=16) on 
Arm64 architecture. 

 
 

 
Figure 9 PractRand quality vs performance of hash/PRNG pairs in the medium batch case (N=16) on 
NVIDIA/CUDA architecture. 

 


